
A Appendix
Proofs from section 3 Here were present proofs
ommitted in the main paper.

Proof. [Proposition 3.1]
If m = x
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1, the joint density is:
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To complete the proof, integrate out p and use the
multivariate Beta function B(x) =
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We now sketch the proof of Theorem 3.1.

Proof. [Theorem 3.1] The first part follows from the
fact: if (X1, ..., Xd

) ⇠ Dir(↵1, ...,↵d

), we have that
(X1 + X2, X3..., Xd

) ⇠ Dir(↵1 + ↵2,↵3, ...,↵d

). The
approximation to log-logistic distribution is proved in
the following lemma. ⌅

Lemma A.1. The tail of the (discrete) Yule distribution

is asymptotically log-logistic.

Proof. Abusing notation, let p
i

represent the probabil-
ity of making an observation i from Yule( 1

1�s

), cor-
responding to preferential attachment with probability
parameter s, and let ⇢ = 1/(1� s).

Stirling’s approximation tells us that

lim

n!1

n!p
2⇡n(n/e)n

= 1.

Applying this on the Beta function, for constant y,
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Thus, as i!1, p
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! ⇢ exp(1 + ⇢)�(1 + ⇢) · i�(1+⇢).
If F is the cumulative distribution function of the

Yule distribution, we have, F (i) =
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The logarithm of odds ratio, logOR(i) =

logF (i)/(1� F (i)) will now be bounded as:
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Notice that in the limit i ! 1 both denominators are
the same as log

�
i⇢/(exp(1 + ⇢)�(1 + ⇢)), to get

logOR(i)! ⇢ log i� c

where c = log�(1 + ⇢) + 1 + ⇢ is a constant.
A characteristic property of the log-logistic distri-

bution with parameters ↵,�, is that the log odds are
linear in log x with slope � and intercept �� log↵. This
completes the proof that the tail of the Yule distribution
is asymptotically log-logistic. ⌅

Before proving the result on confidence intervals,
define I(z) be the indicator that z is true. Under this
notation, n

i

=

P
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Proof. [Theorem 3.2] Consider n(x) =
P
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j=1 I(xj

= x).
Its expectation is E(n(x)) =
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Its variance is V(n(x)) =
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= x)). Note that 1 � p(x) ⇡ 1 for almost all
unique x

i, since the distribution is skewed. Further,
we neglect covariances to get that V(n(x)) ⇡ np(x).
In other words, an approximate distribution for n(x) is
poisson with mean np(x). The confidence interval in
Eq. 3.5 follows immediately from [8]. ⌅
One may use any other confidence intervals for the
Poisson distribution.

Estimation of ↵: Here, we describe the math that
goes into deriving the fitting algorithm for ↵. The ba-
sic ideas are the same as the maximum likelihood es-
timation of the Dirichlet-Multinomial distribution, as
described in [15]. They are included here for complete-
ness.

The likelihood function for ↵, its first and second
derivatives are:
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Input: Data, X = {x(1),x(2), ...,x(n)} and ↵(0),
the starting guess

Output: ↵
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Algorithm 1: MLE-Alpha: Algorithm to find
MLE of ↵ of FusionRP. Note that  and  0

are the digamma and trigamma functions respec-
tively

r2l(↵) = D+ z11T(A.3)

where  , 0 are the digamma and trigamma func-
tions respectively, z = n 0
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). As in the case of the Dirchlet-
Multinomial distribution [15], the Hessian r2l(↵) can
be inverted efficiently using the Sherman-Morisson iden-
tity as:
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The Newton step will now be: ↵  ↵ �
(r2l(↵))

�1rl(↵). This can be simplified to give al-
gorithm 1. Proof of Proposition 3.2 is now direct.

Proof. [Proposition 3.2] Estimation of s just requires
two counts. Because of the special structure in the
Hessian (Eq. A.4), Netwon’s method will be efficient.
Let n0 be the number of unique observations (and not
n, the total observations). Group the observations into
(unique observation, count) pairs, and each iteration
requires us to over all such pairs once. Also, the gradient
and the matrix D are d dimensional. And, in practice,
Newton’s method requires 5-10 iterations to converge.
⌅

It can be seen that l(↵) is not concave in ↵ and
hence we can only efficiently find a local maximizer.

Firstly, if we find a good enough starting point ↵0, we
may find a good maximum. The estimate of ↵0 from
x

1/m1,x2/m2, ...,xn/mn ⇠ Dir(↵0) works as a good
initialization, in practice. We use the moment matching
estimate of [15].

The fitting algorithm is described in Algorithm 1


